Sugar cane is burned in boilers at an ethanol plant near Ribeirao Preto in Brazil. The new breed of biofuels may supplant ethanol, the well-established alternative-energy fuel that has been criticised for raising corn prices and taking up valuable agricultural land. Synthetic biologists are now working on the next generation of green fuels.
Sugar cane is burned in boilers at an ethanol plant near Ribeirao Preto in Brazil. The new breed of biofuels may supplant ethanol, the well-established alternative-energy fuel that has been criticisedShow more

The refinery in your gut



Los angeles // Fuel might be a messy business now, as the oil spill fouling the Gulf of Mexico reminds us, but it might not always have to be. Scientists envision facilities that churn out black gold by using engineered bacteria, yeast and algae to do all the dirty work. Recently, scientists reported a significant step toward that futuristic goal: an engineered strain of the gut bacterium Escherichia coli that can make a diesel-like mixture of hydrocarbons.

The researchers, at South San Francisco-based biotech company LS9, Inc, created their biological hydrocarbon factory using genes from water-dwelling blue-green algae that naturally make tiny amounts of the fuel. They transplanted the genes into E. coli and, with a few more genetic tweaks, adjusted the bug's metabolism so it churned out 100 times more fuel than the algae did. The finding, published in the journal Science, is the company's second announcement this year of a bacterium with fuel-production abilities.

"It's a very promising breakthrough," said Thomas Foust, a scientist at the National Renewable Energy Laboratory in Golden, Colorado. Whether it will translate into a commercially successful product is another matter, he added. But he and others in the expanding field of "synthetic biology" are confident that sooner or later, something will. In May, synthetic biology was brought into the spotlight with the announcement of what many called "artificial life". Scientists at the J Craig Venter Institute in La Jolla, California chemically synthesised a whole bacterial genome and inserted it into a cell. The genetic material took over and turned the cell into a new type of organism.

This advance caught the public's eye, and Barack Obama's as well. The American president instructed his bioethics commission to investigate the implications of the research and other synthetic biology work. However, most synthetic biologists are doing something a little less Frankenstein-sounding than that. They are plucking genes from plants, bacteria, insects and more to make cellular factories that produce fuels and other chemicals such as pigments, fragrances and drugs. They are also working towards creating catalogues of standardised genetic pieces that future designers can draw upon to make bugs with properties that scientists need.

Geneticists began altering genes almost 40 years ago, but those now in the field say the term "synthetic biology" signifies a new engineering mentality being brought to the enterprise. In the past, usually just a gene or two was changed, with little sophisticated computer modelling to predict the effect on a cell's delicate biochemical balance. Today, the mindset is different - even the words the scientists use to discuss their tools. Genes and cells are described in engineering-speak as "parts" and "devices".

"This time, we're trying to do the engineering right," said the Harvard genetics professor George Church. "It's a whole [different] attitude that's long overdue." Biofuels are an especially hot target for this emerging field. Higher oil prices have improved their economic competitiveness, and there is a growing scientific toolkit, more government funding and greater public demand for greener options.

Amyris Inc, in Emeryville, California, uses engineered yeast to convert sugar into a molecule called farnesene that can be used as a diesel substitute. The company got its start in the synthetic biology market by engineering a yeast strain to mass-produce artemisinin, a drug used to treat malaria. It is working with the French pharmaceutical company Sanofi-Aventis to develop a product for market by 2012.

Biofuels seemed the next logical step, said Jack Newman, Amyris's co-founder and senior vice president of research. Conveniently, the same metabolic system that produces the malaria drug can, with small changes, produce the fuel. The company made its first small quantities of the chemical in 2006, dubbed the "miracle droplet" by the scientists there. In 2008, Amyris opened a pilot plant in Brazil, where sugar cane is cheap and plentiful, and last month began testing its fuel in six buses in Sao Paulo. It is working toward commercialisation in 2011, Newman said.

LS9, meanwhile, has produced its fuels on a small scale and successfully tested them in engines. It is now renovating a demonstration plant in Okeechobee, Florida. The company aims to reach commercial capacity in 2013 with a plant in Brazil, said Stephen del Cardayre, LS9's vice-president of research and development. Such efforts may ultimately supplant ethanol, a well-established alternative-energy fuel that has garnered criticism for driving up corn prices and hogging valuable agricultural land.

Ethanol was an early biofuel target because cells can make it relatively easily. Yeast naturally produces alcohol when fed corn, in a process similar to beer fermentation. Over the years, companies have worked to improve the microbe's ethanol-producing ability, but always by building on its natural metabolism. Synthetic biologists, in contrast, are granting yeast - and E.coli - new metabolic capabilities to create the next generation of "green" fuels. These, they say, have advantages over ethanol. They store more energy per litre, can be easily extracted, and can be used directly in existing diesel engines.

"Rather than changing the infrastructure to fit nature's fuel, let's change the biology," said Jay Keasling, an engineering professor at the University of California at Berkeley who is involved with both the Amyris and LS9 efforts. Many other alternative fuel efforts are under way. Researchers are trying to move from sugar-based production toward methods that use plants and parts that are not agriculturally useful, such as corn stalks and fast-growing switchgrass. Others are working to capture algae's natural ability to convert sunlight into energy, but it will probably be 10 to 20 years before these methods reach large-scale implementation.

As young blood enters the field, ideas of what synthetic biology could do are expanding - sometimes in playful directions. At this year's International Genetically Engineered Machine competition jamboree, to be held in November at the Massachusetts Institute of Technology, an undergraduate team from the California Institute of Technology (Caltech) will present its efforts towards making a three-dimensional printer out of plastic-producing E. coli.

Shine a light on the microbes and they release the plastic, explained the team advisor and Caltech professor Richard Murray. And in past competitions, college students made bacteria - dubbed "E. chromi" - that produce a rainbow of pigments, as well as others that, depending on where they are in their life cycle, smell either like bananas or wintergreen. * Los Angeles Times

Company%20profile
%3Cp%3E%3Cstrong%3ECompany%20name%3A%3C%2Fstrong%3E%20Fasset%0D%3Cbr%3E%3Cstrong%3EStarted%3A%20%3C%2Fstrong%3E2019%0D%3Cbr%3E%3Cstrong%3EFounders%3A%3C%2Fstrong%3E%20Mohammad%20Raafi%20Hossain%2C%20Daniel%20Ahmed%0D%3Cbr%3E%3Cstrong%3EBased%3A%3C%2Fstrong%3E%20Dubai%0D%3Cbr%3E%3Cstrong%3ESector%3A%20%3C%2Fstrong%3EFinTech%0D%3Cbr%3E%3Cstrong%3EInitial%20investment%3A%3C%2Fstrong%3E%20%242.45%20million%0D%3Cbr%3E%3Cstrong%3ECurrent%20number%20of%20staff%3A%3C%2Fstrong%3E%2086%0D%3Cbr%3E%3Cstrong%3EInvestment%20stage%3A%3C%2Fstrong%3E%20Pre-series%20B%0D%3Cbr%3E%3Cstrong%3EInvestors%3A%3C%2Fstrong%3E%20Investcorp%2C%20Liberty%20City%20Ventures%2C%20Fatima%20Gobi%20Ventures%2C%20Primal%20Capital%2C%20Wealthwell%20Ventures%2C%20FHS%20Capital%2C%20VN2%20Capital%2C%20local%20family%20offices%3C%2Fp%3E%0A
The specs
Engine: Long-range single or dual motor with 200kW or 400kW battery
Power: 268bhp / 536bhp
Torque: 343Nm / 686Nm
Transmission: Single-speed automatic
Max touring range: 620km / 590km
Price: From Dh250,000 (estimated)
On sale: Later this year
Mina Cup winners

Under 12 – Minerva Academy

Under 14 – Unam Pumas

Under 16 – Fursan Hispania

Under 18 – Madenat

Electoral College Victory

Trump has so far secured 295 Electoral College votes, according to the Associated Press, exceeding the 270 needed to win. Only Nevada and Arizona remain to be called, and both swing states are leaning Republican. Trump swept all five remaining swing states, North Carolina, Georgia, Pennsylvania, Michigan and Wisconsin, sealing his path to victory and giving him a strong mandate. 

 

Popular Vote Tally

The count is ongoing, but Trump currently leads with nearly 51 per cent of the popular vote to Harris’s 47.6 per cent. Trump has over 72.2 million votes, while Harris trails with approximately 67.4 million.

Citadel: Honey Bunny first episode

Directors: Raj & DK

Stars: Varun Dhawan, Samantha Ruth Prabhu, Kashvi Majmundar, Kay Kay Menon

Rating: 4/5

UAE - India ties

The UAE is India’s third-largest trade partner after the US and China

Annual bilateral trade between India and the UAE has crossed US$ 60 billion

The UAE is the fourth-largest exporter of crude oil for India

Indians comprise the largest community with 3.3 million residents in the UAE

Indian Prime Minister Narendra Modi first visited the UAE in August 2015

His visit on August 23-24 will be the third in four years

Sheikh Mohamed bin Zayed, Crown Prince of Abu Dhabi and Deputy Supreme Commander of the Armed Forces, visited India in February 2016

Sheikh Mohamed was the chief guest at India’s Republic Day celebrations in January 2017

Modi will visit Bahrain on August 24-25

World record transfers

1. Kylian Mbappe - to Real Madrid in 2017/18 - €180 million (Dh770.4m - if a deal goes through)
2. Paul Pogba - to Manchester United in 2016/17 - €105m
3. Gareth Bale - to Real Madrid in 2013/14 - €101m
4. Cristiano Ronaldo - to Real Madrid in 2009/10 - €94m
5. Gonzalo Higuain - to Juventus in 2016/17 - €90m
6. Neymar - to Barcelona in 2013/14 - €88.2m
7. Romelu Lukaku - to Manchester United in 2017/18 - €84.7m
8. Luis Suarez - to Barcelona in 2014/15 - €81.72m
9. Angel di Maria - to Manchester United in 2014/15 - €75m
10. James Rodriguez - to Real Madrid in 2014/15 - €75m